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Climate and competition influence sockeye salmon population
dynamics across the Northeast Pacific Ocean
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Robert Campbell, and Kristen Gorman

Abstract: Pacific salmon productivity is influenced by ocean conditions and interspecific interactions, yet their combined effects
are poorly understood. Using data from 47 North American sockeye salmon (Oncorhynchus nerka) populations, we present
evidence that the magnitude and direction of climate and competition effects vary over large spatial scales. In the south, a warm
ocean and abundant salmon competitors combined to strongly reduce sockeye productivity, whereas in the north, a warm ocean
substantially increased productivity and offset the negative effects of competition at sea. From 2005 to 2015, the approximately
82 million adult pink salmon (Oncorhynchus gorbuscha) produced annually from hatcheries were estimated to have reduced the
productivity of southern sockeye salmon by ~15%, on average. In contrast, for sockeye at the northwestern end of their range,
the same level of hatchery production was predicted to have reduced the positive effects of a warming ocean by ~50% (from a
~10% to a ~5% increase in productivity, on average). These findings reveal spatially dependent effects of climate and competition
on sockeye productivity and highlight the need for international discussions about large-scale hatchery production.

Résumé : Si la productivité des saumons du Pacifique est influencée par les conditions océaniques et les interactions entre
especes, les effets combinés de ces deux facteurs demeurent toutefois mal compris. En utilisant des données sur 47 populations
nord-américaines de saumons rouges (Oncorhynchus nerka), nous présentons des preuves de variations a de grandes échelles
spatiales de la magnitude et de la direction des effets du climat et de la concurrence. Dans le Sud, les effets combinés d’un océan
chaud et d’'une abondance de saumons concurrents ont entrainé une forte réduction de la productivité des saumons rouges, alors
que dans le Nord, un océan chaud a accru substantiellement la productivité et contré les effets négatifs de la concurrence en mer.
11 est estimé que, de 2005 a 2015, les quelque 82 millions de saumons roses (0. gorbuscha) adultes produits annuellement en
écloserie ont causé une réduction de 15 % en moyenne de la productivité des saumons rouges du Sud. En comparaison, il a été
prédit que, pour les saumons rouges a ’extrémité nord-ouest de leur aire de répartition, le méme niveau de production en
écloserie a réduit de 50 % les effets positifs du réchauffement de ’océan (’laugmentation de la productivité passantde 10 % a5 %
en moyenne). Ces constatations révelent des effets variables dans I’espace du climat et de la concurrence sur la productivité des
saumons rouges et soulignent la nécessité de discussions internationales sur la production en écloserie a grande échelle. [Traduit
par la Rédaction]

processes (e.g., interactions among species) and be filtered
through the life history characteristics of individual populations
(Blois et al. 2013). As a result, the consequences of changing cli-
mate on marine species, and the economies and ecosystems that
depend on them, can be difficult to predict and manage.

In addition to impacts from climate change, large increases in
abundance of some fish species in the North Pacific Ocean over
the past several decades have altered the dynamics of a wide
variety of species from phytoplankton and zooplankton to sea-
birds and salmon (Springer and van Vliet 2014; Batten et al. 2018).

Introduction

Climate change is having a profound effect on the world’s ocean
ecosystems, where it poses challenges to species persistence and
fisheries sustainability (Cheung et al. 2010; Gattuso et al. 2015;
Portner et al. 2019). As the world’s oceans warm and experience
more frequent extremes (e.g., marine heat waves; Di Lorenzo
and Mantua 2016; Cheng et al. 2019), species may be negatively
or positively impacted depending on their distribution, and
these effects can vary strongly across geographic gradients

(Hoegh-Guldberg and Bruno 2010; Pinsky et al. 2013). In addition
to direct effects on both the abundance and distribution of spe-
cies, ocean climate may mediate the consequences of ecological

Indeed, more Pacific salmon (Oncorhynchus spp.) have returned to
fresh water from the North Pacific Ocean in recent years than at
any time in the previous 90 years (Ruggerone and Irvine 2018).
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Pink salmon (Oncorhynchus gorbuscha) numerically dominate the
abundance of salmon in the North Pacific (average 500 million
adults per year), and ~22% of salmon in recent decades (40% of
biomass) are from salmon released by hatcheries in Asia and
Alaska (primarily pink and chum (Oncorhynchus keta), which ac-
count for the majority of biomass; Ruggerone and Irvine 2018).
These salmon are broadly distributed and overlap in the North
Pacific Ocean (Myers et al. 1996; Beacham et al. 2014), where they
can compete for common prey with other pelagic consumers
(Kaeriyama et al. 2000; Bugaev et al. 2001; Davis et al. 2005;
Johnson and Schindler 2009). Increased hatchery production in
recent years has fueled debate about the potential for adverse
effects on North Pacific ecosystems and has led to calls for inter-
national cooperation among North Pacific nations to reduce total
releases of hatchery-reared juvenile salmon into the North Pacific
Ocean (Holt et al. 2008; Debertin et al. 2017).

While the effects of climate change and increased competition
among salmon for limited food resources have each been docu-
mented, the joint effects of these stressors on salmon productivity
are poorly understood (but see Debertin et al. 2017; Cunningham
et al. 2018). In particular, there has been little analysis of the
potential mediating effect of ocean climate on density-dependent
interactions across geographic gradients. Such mediating effects
may occur, for example, as a result of climate-induced reductions
(or increases) in growth during early life phases leading to in-
creased (or decreased) sensitivity to density-dependent effects dur-
ing later life phases. Alternatively, ocean climate may mediate the
effects of density dependence within the same life phase. Here, we
capitalize on a large dataset of sockeye salmon (Oncorhynchus nerka)
populations from across the eastern North Pacific (Fig. 1a), along
with information on ocean climate conditions and indices of po-
tential salmon competitors at sea (Fig. 1b) to quantify the com-
bined effects of ocean warming and increasing competition on
sockeye salmon across their range.

Methods

Sockeye salmon data

We used spawner (escapement) and recruitment (adult off-
spring, including those caught in fisheries) data for 47 sockeye
populations across their North American range (Fig. 1; also refer to
online Supplementary Information, Table S1'). This dataset is up-
dated from that described in Peterman and Dorner (2012); how-
ever, we only retained populations with detailed age composition
information by brood year (i.e., years spent in fresh water and the
ocean). The resulting dataset spanned the 1950 to 2009 brood
years, 26 different ocean entry points, and 21 different life history
types (i.e., unique combinations of freshwater and marine resi-
dence), although most populations were dominated by one to
three life histories and had shorter brood year time series. We
organized the dataset into three large marine ecosystems because
they exhibited shared trends in productivity at this scale
(Peterman and Dorner 2012) and because oceanographic pro-
cesses, and salmon responses to them, tend to differ across these
regions. Specifically, all populations that enter the ocean in Brit-
ish Columbia and Southeast Alaska were assigned to the West
Coast ecosystem, populations that enter the ocean in south cen-
tral Alaska were assigned to the Gulf of Alaska ecosystem, and
western Alaska populations were assigned to the Bering Sea eco-
system (Fig. 1a).

Because of variability in the beginning of productivity time
series among populations and ocean regions (Table S1'), and the
large-scale ocean regime shift that occurred in 1976-1977, we trun-
cated our time series to begin after the 1975 brood year. This
ensured that there was balanced representation of stocks through

Can. J. Fish. Aquat. Sci. Vol. 77, 2020

time and among ocean regions in our analyses and that our infer-
ence was not confounded by the well-documented 1976-1977
ocean regime shift (Mantua et al. 1997). In sensitivity analyses, we
also fit the models to the complete time series (Supplemental
Information?).

Ocean climate index

We used sea surface temperature (SST) near ocean-entry points
for juvenile sockeye salmon populations during the period of out-
migration to index early marine ocean conditions experienced by
juvenile salmon. Specifically, we used monthly extended recon-
structed SST data (NOAA ERSSTV5) to calculate stock-specific SST
indices (Liu et al. 2015; Huang et al. 2017). We first calculated
monthly SST anomalies for each 2° x 2° grid cell using 1950-
2010 as the base period. We then calculated the annual stock-
specific SST indices by averaging the SST anomalies across (i) grid
cells whose centers were within 400 km of the ocean entry point
of a given salmon stock and (ii) the months roughly corresponding
to juvenile salmon outmigration and early marine residency
(April-July for West Coast stocks, May-August for Gulf of Alaska
stocks, June-September for Bering Sea stocks; Mueter et al. 2002).

Competitor index

We used the abundance of pink salmon across the North Pacific
(Ruggerone and Irvine 2018) in the second and third years of sock-
eye marine life as an index of competition for food. This approach
is consistent with research that has suggested sockeye from
Southeast Alaska through British Columbia primarily exhibit
responses to pink salmon during their second and third growing
seasons (Connors et al. 2012; Ruggerone and Connors 2015). Some
sockeye smolts from the Gulf of Alaska region and south may also
interact with pink salmon during early marine life, but evidence
for adverse interactions during the first year at sea is typically
weaker (McKinnell and Reichardt 2012; Ruggerone and Connors
2015). In sensitivity analyses (Supplemental Information?), we also
considered the total numerical abundance and biomass of North
Pacific pink, chum, and sockeye, as well as just numerical abun-
dance of North American pink salmon, as alternative competitor
indices in addition to a detrended North Pacific pink salmon com-
petitor index.

Hierarchical stock-recruitment modelling

We modeled sockeye productivity as a function of spawner
abundance, early marine ocean conditions, and competitor abun-
dance:

log,(R;,[S;,) =

@ €, = ¢g 4+ V1 — ¢25i,r

8y ~ Normal(O, a-iz)

o; + BS;y + vSST; 4 + kComp;,
+ X{(SST; ., Comp,,,)) + €,

where R and S are recruitment and spawner abundance, respec-
tively, for population i in brood year t, « is intrinsic productivity,
Bis the strength of within population density dependence, yis the
stock-specific coefficient for early marine ocean conditions, SST is
an index of early marine ocean conditions (i.e., sea surface tem-
perature) in year t + k, where k is the number of years after spawn-
ing the population entered the ocean, k is the stock-specific
coefficient for the competition index, Comp is an index of com-
petitor abundance in year t +j, where j is the number of years after
spawning the population interacted with the competitors, y is the
stock-specific interaction coefficient, and e is the residual error

1Supplementary Information are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0422.
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Fig. 1. Sockeye salmon stock ocean entry locations and time series of ocean entry age diversity and climate and competitor time series.

(a) Ocean entry locations for stocks in the West Coast (green circles), Gulf of Alaska (orange squares), and Bering Sea (blue triangles)
ecosystems. (b) Time series of the proportion of smolts entering the ocean at age-1 (top row); pink salmon abundance indices (middle row; in
hundreds of millions), where solid lines show total abundance and dashed lines show hatchery contributions; and SST indices (bottom row;
anomaly in °C). Thin light lines show stock-specific time series for each ecosystem, and thick dark lines show the mean across all stocks in the
ecosystem. Brood years range from 1950 to 2009, and the 1976-1977 ocean regime shift (1975 brood year) is denoted by the dashed vertical
grey line in panel (b). Map in panel (a) created using the rnaturalearth R package (South 2017). [Colour online.]
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term assumed to be first-order autocorrelated, with correlation
parameter ¢ and variance 2.

Juvenile sockeye salmon produced from a single brood year of
spawners can enter the ocean over multiple years. Therefore, for
each stock, we calculated brood-year-specific climate and compe-
tition indices as a weighted average equal to the brood year and
stock-specific proportion of smolts entering the ocean each year

1980 2000 1960 1980 2000

Brood year

(Mueter et al. 2002; Ruggerone and Connors 2015; Malick et al.
2017).

We used Bayesian hierarchical models to estimate the effects of
ocean conditions and competitor abundance on sockeye salmon
productivity. We modeled the stock-specific parameters «;, y;, K;,
and y; hierarchically by assuming they arise from common prior
distributions (i.e., these parameters were assumed exchangeable
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Table 1. Summary of estimated model coefficient posterior distributions for each variable.

Ecosystem Coefficient Lower 95% CI Mean Upper 95% CI % change in R[S
Bering Sea SST 0.12 0.21 0.29 22.88
Gulf of Alaska SST 0.01 0.08 0.17 8.87
West Coast SST -0.21 -0.13 -0.05 -12.08
Bering Sea Comp -0.19 -0.09 -0.01 -9.03
Gulf of Alaska Comp -0.18 -0.09 0.00 -8.50
West Coast Comp -0.32 -0.24 -0.15 -21.01
Bering Sea SST x Comp -0.02 0.05 0.12 5.37
Gulf of Alaska SST x Comp -0.08 -0.01 0.05 -1.04
West Coast SST x Comp -0.06 0.02 0.10 2.32

Note: The Lower 95% CI and Upper 95% CI columns give the lower and upper bounds of the 95% credibility
interval, respectively. The Mean column gives the mean of the posterior distribution. The percent change in return
per spawner (R/S) column gives the mean percent change in productivity (R/S) given a one standard deviation unit

increase in a given covariate.

among a subset of stocks). For Fraser River stocks (No. 1-19 in
Fig. 1a), spawner abundances were in units of effective female
spawners (i.e., female spawner abundance adjusted for un-
spawned eggs), whereas for all other stocks spawner abundances
were total male and female spawners. Thus, «; parameters were
split into two groups (one group that included Fraser River stocks
and another group that included all non-Fraser River stocks) that
were exchangeable within each group but not between the two
groups. We assumed that the climate and competition parameters
v;» K;; and x; were exchangeable among stocks within the same
ocean ecosystem. Previous research has indicated large variations
in the magnitude of the stock-specific density dependence and
residual variance parameters for sockeye salmon populations
(Mueter et al. 2002; Su et al. 2004; Malick et al. 2017), and so we
assumed B; and o7 were independent among stocks (i.e., nonex-
changeable among stocks). We also assumed the autocorrelation
parameter ¢ was common to all stocks (Malick et al. 2017). Further
details on priors, model fitting, assessment of convergence, and
sensitivity analyses are provided in the online Supplemental In-
formation'. Code and data to reproduce our analyses are archived
in Connors and Malick (2020).

Results and discussion

Numerous marine species exhibit latitudinal gradients in re-
sponses to a warming ocean and, consistent with previous work
(e.g., Mueter et al. 2002; Litzow et al. 2019), we found similar
evidence for this in sockeye salmon productivity (Table 1). At the
southern end of the sockeye salmon range (West Coast here), a
warmer ocean during early marine life was related to reduced
productivity, but in the middle and northwestern end of their
range a warming ocean was associated with increased productiv-
ity (Figs. 2a and S1'). The effect of a warming ocean was estimated
to be 2.5 times stronger at the northwestern end of their range
(23% increase in recruits per spawner per standard deviation unit
(SDU) increase in SST; =1.5 °C) than in the middle (9% increase),
whereas sockeye in the southern portion of their range were pre-
dicted to experience a 12% reduction in productivity (Table 1). The
range of ocean temperatures encountered by sockeye salmon dur-
ing early marine life are well within their physiological limits,
suggesting that processes correlated with SST (e.g., stratification,
phenology of spring bloom, advection affecting delivery of nutri-
ents or zooplankton to coastal areas, or fish growth energetics) as
opposed to direct temperature effects, drive these SST-sockeye
productivity relationships.

Increasing competitor abundance was negatively associated
with sockeye productivity at the southern end of their range,
where a 1 SDU increase in competitor abundance (=119 million
salmon) was predicted to result in a ~21% reduction in recruits-
per-spawner (Table 1; Figs. 2b and S1'). In contrast, we found evi-
dence of a weaker negative association between competitor
abundance and sockeye productivity in the Gulf of Alaska and

Fig. 2. Posterior probability distributions of the predicted effect of
(a) SST, (b) competitors, (c) an interaction between the two, and

(d) the combined effect from all covariate terms, on sockeye salmon
survival. Overall hyperdistribution of the covariate effects are in
bold lines, with individual stock-specific distributions illustrated by
the light lines. Covariate effects are standardized (i.e., per standard
deviation unit increase in each covariate), which equates to 1.5 °C
SST and 119 million pink salmon. [Colour online.]
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northwestern end of the sockeye range (~9% reduction in both
regions; Table 1; Figs. 2b and S1Y).

The combined effects of a warming ocean and increasing
salmon competitor abundance (and their interaction) across the
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North Pacific shifted from negative to positive across the sockeye
range from south to north. At the southern end of their range
our analysis predicts a 30% reduction in recruits produced per
spawner for every increase of 1.5 °C in SST and 119 million salmon
competitors (Figs. 2d and S1). The combined SST and competitor
effects were highly variable in the middle of the sockeye range
(Fig. 2d), but positive at the northwestern end of their range where
the negative influence of competition was offset by a stronger
positive influence of ocean temperature such that the same mag-
nitude of increases in ocean temperature and competitors as
above were predicted to result in a 19% increase in the number of
recruits produced per spawner.

We found weak evidence that the effect of increasing ocean
temperature during early marine life mediates the consequences
of competition later in marine life at the northwestern end of the
sockeye range (i.e., a positive interaction term whose credible
intervals still overlap zero; Table 1; Fig. 2c¢). In contrast, the inter-
action terms for the other two ocean regions were smaller and
more centered around zero. The weakly positive interaction term
for the Bering Sea stocks suggests that as the ocean warms, the
predicted effect of competition becomes weaker (i.e., it is antago-
nistic). We hypothesize that this may occur because a warming
ocean during early marine life that increases sockeye productivity
and perhaps growth at the northwestern end of their range may
also make sockeye less sensitive to density-dependent interac-
tions later in marine life.

We conducted sensitivity analyses to further examine the evi-
dence for competition stemming from the combined abundances
or biomass of pink, sockeye, and chum salmon in addition to
climate effects, at both a North Pacific and North American scale.
Inferences from these analyses were broadly similar to those pre-
sented here for pink salmon, though the estimated effect of the
interaction between climate and competition for West Coast
stocks and of competition for Gulf of Alaska and Bering Sea stocks
varied to some degree depending on which competitor index was
used (Supplemental Information, Table S5! and Figs. S2-S6%). In
addition, when our analysis was repeated with all available brood
years of data, including those before the 1976-1977 ocean regime
shift that strongly influenced both sockeye and pink salmon
abundances, we found that the evidence for competition effects
on productivity in the Bering Sea and the Gulf of Alaska, but not
West Coast, declined while the effect of SST remained similar
(Table S5 and Fig. S9). Other studies have found some evidence
for nonstationarity in salmon - ocean climate relationships
(Malick 2020), including a weaker negative effect of SST on sock-
eye productivity in West Coast region stocks after a pronounced
decline in Aleutian Low variance in 1988-1989 (e.g., Litzow et al.
2019). We found no evidence to support nonstationarity in climate
effects when we repeated our analysis on a dataset that was trun-
cated to only consider the time period after 1988-1989 (Supple-
mental Information, Table S5! and Fig. S81).

Our findings are supported by previous research on Bristol Bay
(Bering Sea) sockeye salmon that indicated the survival benefits
from greater early marine growth offset the adverse effects of
pink salmon on sockeye salmon during late marine life. Abun-
dances of both pink and sockeye salmon in the North Pacific
doubled after the 1977 ocean regime shift, and greater productiv-
ity of Bristol Bay sockeye salmon is associated with greater early
marine growth (Ruggerone et al. 2007). Sockeye salmon originat-
ing from the Bering Sea interact with relatively few pink salmon
during early marine life and numerous pink salmon during sub-
sequent years when they are distributed farther west, leading to
reduced growth, survival, and abundance of sockeye salmon
(Ruggerone et al. 2003). Pink salmon effects on sockeye salmon are
expressed by strong biennial patterns that cannot be explained by
ocean climate. However, when examining adult returns per par-
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ent spawner, the complex life history of Bering Sea sockeye
salmon (multiple years of residence in freshwater and ocean hab-
itats) may make the detection of these biennial patterns more
difficult. In other words, progeny from each brood year interact
with both odd-year (abundant) and even-year (less abundant) pink
salmon, potentially dampening the pink salmon effect on returns
from the brood year. In contrast, sockeye salmon from the south-
ern region, such as Fraser River, have relatively simple life histo-
ries dominated by a single age class (age-1.2) that maintains the
biennial pattern in population characteristics (Ruggerone and
Connors 2015).

Though a growing body of evidence suggests that competition
among salmon at sea can influence salmon growth, maturity, and
productivity, the potential for food resources to limit salmon pro-
duction across the North Pacific continues to be vigorously
debated (Amoroso et al. 2017; Shuntov et al. 2017). While the
majority of salmon production is from wild populations, hatchery
production increasingly contributes to the number of salmon at
sea. For example, the abundance of hatchery pink salmon during
2005-2015 (82 million adults per year, or 17% of all pink salmon)
exceeded the abundance of wild chum salmon and was equal to
the abundance of wild sockeye salmon over the same time period
(Ruggerone and Irvine 2018). In addition, there are strong geo-
graphic differences in hatchery production. For example, Alaskan
hatchery production of pink salmon represented 18%-49% of total
annual pink salmon produced in Alaska from 2005 to 2015.

Our analyses allow us to quantify what the potential conse-
quences of hatchery production may be for sockeye productivity
across their range. Using the parameter estimates from eq. 1
(Table 1), we estimate that total hatchery production of pink
salmon has reduced sockeye productivity at the southern end of
their range by ~15%, on average, over the past decade (2005-2015;
Supplemental Information'). This suggests that hatchery produc-
tion has contributed to the depressed productivity of sockeye
salmon in British Columbia, some of which have recently been
assessed as at risk of extinction (COSEWIC 2017). In contrast,
above-average SST conditions in the Gulf of Alaska and Bering Sea
regions over the past decade are estimated to have largely offset
the negative effects of hatchery production on sockeye productiv-
ity. In the Gulf of Alaska, hatchery pink salmon production is
estimated to have reduced sockeye productivity by ~5%, on aver-
age, over the past decade, while in the Bering Sea the positive
influence of above-average SST has led to an increase in produc-
tivity of ~5%, on average, compared with an increase of 10%, on
average, if no hatchery production had occurred (Supplemental
Information?).

Sockeye exhibit a remarkable degree of variation in life histo-
ries (Quinn 2018). This life history diversity (e.g., variable age at
ocean entry or maturity), which can dampen the effects of a vari-
able environment on salmon survival and abundance (Moore et al.
2014), may also moderate the effects of ocean climate and compe-
tition on sockeye by spreading the consequences of adverse cli-
mate and competition across multiple life histories within a
cohort. This buffering effect may be particularly important for
moderating the effects of competition because of the high-
frequency variation in competitor abundance from year to year
due to the fixed 2-year life cycle of pink salmon. The loss of life
history diversity, for example due to climate warming (Cline et al.
2019), has the potential to increase the vulnerability of sockeye
populations to the adverse effects of variable environmental con-
ditions and reduce the stability of these populations and the fish-
eries that depend on them. As such, future research should seek to
better understand how life history diversity mediates the conse-
quences of a warming ocean and density-dependent interactions
among salmon at sea on salmon dynamics.

Increasing abundances of salmon across the North Pacific, and
in particular pink salmon, have been linked to a trophic cascade
in epipelagic waters, leading to fewer zooplankton, reduced

< Published by NRC Research Press



Can. J. Fish. Aquat. Sci. Downloaded from www.nrcresearchpress.com by 71.212.120.66 on 06/13/20
For personal use only.

948

growth, survival and delayed maturation of salmon, reduced re-
productive success of seabirds, and perhaps reduced foraging ef-
ficiency of southern resident killer whales (Orcinus orca) (Springer
and van Vliet 2014; Ruggerone and Connors 2015; Batten et al.
2018; Ruggerone et al. 2019). Nonetheless, some jurisdictions (e.g.,
Alaska and Russia) continue to allow increasing hatchery produc-
tion of pink and chum salmon with minimal consideration of
adverse effects on distant salmon populations. Our findings high-
light the importance of international cooperation to consider and
potentially constrain the number of hatchery salmon released
into the ocean to help Pacific salmon adapt to a warming and
increasingly uncertain future.
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